Установите соответствие между графиками функций и формулами, которые их задают. Впишите в приведённую в ответе таблицу под каждой буквой соответствующую цифру.
ФОРМУЛЫ | Графики | ||
1) y=-x2+7x-14 2) y=x2-7x+14 3) y=x2+7x+14 4) y=-x2-7x-14 |
A)![]() |
Б)![]() |
В)![]() |
Все формулы представляют из себя
квадратичные функции.
В функциях 2) и 3) а - положительный, значит, ветви параболы направлены вверх.
В функциях 1) и 4) а - отрицательный, значит, ветви параболы направлены вниз.
Найдем координаты вершин парабол, чтобы определить какой график какой функции соответствует.
Координату x0 можно найти по формуле: x0=-b/2a
1) x0=-7/(2(-1))=3,5
2) x0=-(-7)/(2*1)=3,5
3) x0=-7/(2*1)=-3,5
4) x0=-(-7)/(2*(-1))=-3,5
Итак, резюмируем:
1) Ветви вниз, x0=3,5
Никакой график не подходит
2) Ветви вверх, x0=3,5
Подходит только график Б)
3) Ветви вверх, x0=-3,5
Подходит только график A)
4) Ветви вниз, x0=-3,5
Подходит только график B)
Ответ: А) - 3), Б) - 2), В) - 4)
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между графиками функций и формулами, которые их задают.
ФУНКЦИИ | ГРАФИКИ | ||
1) y=-(2/x) 2) y=x2-2 3) y=2x 4) y=2/x |
А) ![]() |
Б) ![]() |
В) ![]() |
Две прямые пересекаются в точке C (см. рис.). Найдите абсциссу точки C.
Постройте график функции
Определите, при каких значениях m прямая y=m не имеет с графиком общих точек.
Установите соответствие между функциями и их графиками.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | |||
А) y=3x Б) y=-3x В) y=(1/3)x |
1) ![]() |
2) ![]() |
3) ![]() |
4) ![]() |
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) f(-1)=f(3)
2) Наибольшее значение функции равно 3
3) f(x)>0 при -1<x<3
Комментарии:
(2017-01-14 01:10:24) Администратор: Кирилл, даже не знаю, как вкралась эта опечатка. Спасибо большое, что заметили. Все исправлено.
(2017-01-14 00:13:35) Кирилл: вы же писали "В функциях 1) и 3) а - положительный, значит, ветви параболы направлены вверх", но когда резюмируем, у 1) уже ветви вниз, как так?