Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Чтобы построить график этой функции, надо построить график каждой подфункции на указанных для подфункций диапазонах.
y1=x2-8x+14 на диапазоне [3;+∞)
y2=x-2 на диапазоне (-∞;3)
Построим графики по точкам (красный график):
X | 3 | 4 | 5 | 6 |
Y | -1 | -2 | -1 | 2 |
X | 3 | 2 | 1 |
Y | -1 | 0 | -1 |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
A)
Б)
В)
ФОРМУЛЫ
1)
2) y=2-x2
3) y=√x
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции и определите, при каких значениях k прямая y=kx не имеет с графиком ни одной общей точки.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k<0, b<0 Б) k<0, b>0 В) k>0, b<0 |
1) ![]() |
2) ![]() |
|
3) ![]() |
4) ![]() |
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ | ГРАФИКИ | |
А) y=1/(9x) Б) y=9/x В) y=-9/x |
1) ![]() |
2) ![]() |
3) ![]() |
4) ![]() |
Комментарии: