Решите неравенство
Первое: это неравенство ни при каких х не будет равно нулю, так как чтобы дробь была равна нулю, числитель должен быть равен нулю, а у нас он равен 12.
Значит мы можем превратить это нестрогое неравенство в строгое, ничего при этом не теряя:
Второе: данная дробь будет меньше нуля, только когда знаменатель будет меньше нуля (так как числитель положительный). Причем знаменатель строго меньше нуля, так как он не может быть равен нулю (на ноль делить нельзя).
Получаем неравенство:
x2-7x-8<0 - его и надо решить.
Решим квадратное уравнение x2-7x-8=0 через
дискриминант
D=(-7)2-4*1*(-8)=49+32=81
x1=(-(-7)+9)/(2*1)=(7+9)/2=16/2=8
x2=(-(-7)-9)/(2*1)=(7-9)/2=-2/2=-1
График этой квадратичной функции - парабола. Ветви параболы направлены вверх, т.к. коэффициент "а" равен 1 (т.е. больше нуля).
Нас интересуют диапазон, где эта функция меньше нуля, т.е. располагается под осью Х:
(-1;8)
Ответ: (-1;8)
Поделитесь решением
Присоединяйтесь к нам...
Свежие фрукты содержат 84% воды, а высушенные — 16%. Сколько требуется свежих фруктов для приготовления 44 кг высушенных фруктов?
Решите неравенство (2x-5)2≥(5x-2)2.
Решите уравнение -3x2+4x-7=-x2+5x-(-1+2x2).
Теплоход проходит по течению реки до пункта назначения 165 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 4 км/ч, стоянка длится 5 часов, а в пункт отправления теплоход возвращается через 18 часов после отплытия из него.
Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 5 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 2 км/ч, а собственная скорость лодки 6 км/ч?
Комментарии: