Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

Решение задачи:

Чтобы построить график этой функции, надо построить график каждой подфункции на указанных для подфункций диапазонах.
y1=x2-6x+11 на диапазоне [2;+∞)
y2=x+1 на диапазоне (-∞;2)
Проанализируем графики.
Первая подфункция:
1) график - парабола
2) так как коэффициент а=1 (т.е. больше нуля), то ветви направлены вверх
3) Найдем корни соответствующего уравнения через дискриминант x2-6x+11=0, чтобы узнать в каких точках парабола пересекает ось Х:
D=(-6)2-4*1*11=36-44=-8
D<0, это означает, уравнение не имеет корней, а значит парабола не пересекает ось Х.
Дальше будем строить по точкам (красный график):

X 2 3 4 5
Y 3 2 3 6
Вторая подфункция:
1) график - прямая
2) 0=x+1 => x=-1, т.е. точка пересечения с осью Х (-1;0)
Строим по точкам (синий график):
X 2 1 0
Y 3 2 1
y=m - это прямые, параллельные оси Х. Зеленым цветом построены прямые y=m. Очевидно, что только две прямые будут иметь только 2 общие точки с нашим графиком - это прямая, проходящая через точку "излома" графика, и прямая, касающаяся вершины параболы.
Точку излома мы уже нашли (в таблицах) - (3;2).
m1=2.
Теперь найдем координаты вершины параболы, координата "y" и будет m.
x0=-(-6)/(2*1)=6/2=3
Подставляем это значение в функцию:
y0(x0)=x02-6x0+11
y0(3)=32-6*3+11=9-18+11=2
Т.е. m2=2
Ответ: m1=3, m2=2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №61BB12

На рисунке изображены графики функций вида y=ax2+bx+c. Для каждого графика укажите соответствующее ему значения коэффициента a и дискриминанта D.

КОЭФФИЦИЕНТЫ ГРАФИКИ
1) a>0, D>0
2) a>0, D<0
3) a<0, D>0
4) a<0, D<0
А) Б) В) Г)

Задача №F486F7

Постройте график функции
y=x|x|+2|x|-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.

Задача №498DB8

Постройте график функции
x2, если |x|≤1
1/x, если |x|>1
и определите, при каких значениях c прямая y=c будет иметь с графиком единственную общую точку.

Задача №019961

Установите соответствие между функциями и их графиками.

ФУНКЦИИ ГРАФИКИ
А) y=(1/3)x+2
Б) y=-4x2+20x-22
В) y=1/x
1) 2)
3) 4)

Задача №F63D9F

На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Наименьшее значение функции равно -8
2) f(-4)>f(1)
3) f(x)<0 при -4<x<2

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика