Постройте график функции
Определите, при каких значениях m прямая y=m не имеет с графиком общих точек.
Отметим Область допустимых Значений (ОДЗ).
На ноль делить нельзя, следовательно:
x2+x≠0
x(x+1)≠0
x≠0
x≠-1
Теперь упростим нашу функцию:
Получили гиперболическую функцию, значит график - гипербола.
Построим график по точкам:
X | -2 | -1 | -0,5 | 0,5 | 1 | 2 |
Y | -3,5 | -3 | -2 | -6 | -5 | -4,5 |
Поделитесь решением
Присоединяйтесь к нам...
Найдите p и постройте график функции y=x2+p, если известно, что прямая y=4x имеет с графиком ровно одну общую точку.
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке |
1) [-3;-2] 2) [-4;-2] 3) [-5;-4] 4) [-5;0] |
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке |
1) [-3;-2] 2) [-4;-2] 3) [-5;-4] 4) [-5;0] |
Установите соответствие между графиками функций и формулами, которые их задают.
ФУНКЦИИ | ГРАФИКИ | ||
1) y=1/x 2) y=-x2-2 3) y=(1/2)x 4) y=-(1/2)x |
А) ![]() |
Б) ![]() |
В) ![]() |
Комментарии: