Постройте график функции и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.
Чтобы построить график этой функции, надо построить график каждой подфункции на указанных для подфункций диапазонах.
y1=-5/x на диапазоне [1;+∞)
y2=-x2-4x на диапазоне (-∞;1)
График первой подфункции - гипербола, будем строить его просто по точкам:
X | 1 | 2 | 5 |
Y | -5 | -2,5 | -1 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ
А) k<0, b<0 Б) k>0, b>0 В) k<0, b>0
ГРАФИКИ
1)
2)
3)
На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) a>0, c<0 2) a<0, c<0 3) a>0, c>0 4) a<0, c>0 |
А) | Б) | В) |
Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+4 ровно одну общую точку. Постройте этот график и все такие прямые.
На графике изображена зависимость атмосферного давления от высоты над уровнем моря. На горизонтальной оси отмечена высота над уровнем моря в километрах, на вертикальной — давление в миллиметрах ртутного столба. Определите по графику, чему равно атмосферное давление на высоте 6 км над уровнем моря. Ответ дайте в миллиметрах ртутного столба.
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Комментарии: