ОГЭ, Математика. Функции: Задача №7AC574 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

В данной функции присутствуем модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения модуля:


Теперь надо построить график каждой подфункции в его границах и объединить их.
1) , при х≥0.
Напишем Область Допустимых Значений (ОДЗ).
Так как знаменатель не может равняться нулю, то x-3x2≠0 Следовательно:
x(1-3x)≠0
x1≠0
x2≠1/3
Теперь можно упростить равенство:

График представляет из себя гиперболу, отметим несколько точек:

X 0,5 1 2
Y -2 -1 -0,5
2) , при х<0.
Напишем Область Допустимых Значений (ОДЗ).
Так как знаменатель не может равняться нулю, то -x-3x2≠0 Следовательно:
-x(1+3x)≠0
x3≠0
x4≠-1/3

График представляет из себя гиперболу, отметим несколько точек:
X -0,5 -1 -2
Y -2 -1 -0,5
Построим график:
График первой подфункции начерчен красным цветом, второй подфункции - синим.
На графике указаны выколотые точки (из ОДЗ) (1/3;-3) и (-1/3;-3).
Функция y=kx проходит через начало координат (при x=0 y тоже равен 0). Очевидно, что данная функция не будет иметь ни одной общей точки только когда:
1) совпадает с осью Х.
2) пройдет через первую выколотую точку.
3) пройдет через вторую выколотую точку.
1) k1=0
2) Подставим первую выколотую точку в функцию прямой -3=1/3k => k2=-9
3) Подставим вторую выколотую точку в функцию прямой -3=-1/3k => k3=9
Ответ: k1=0, k2=-9, k3=9

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №7E491E

Постройте график функции y=x+3|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.



Задача №531C36

Постройте график функции и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.



Задача №25D688

На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.

КОЭФФИЦИЕНТЫ ГРАФИКИ
1) k<0, b<0
2) k<0, b>0
3) k>0, b>0
4) k>0, b<0
А) Б) В)



Задача №3F1642

На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Функция убывает на промежутке [-1;+∞)
2) ƒ(0)>ƒ(1)
3) Наибольшее значение функции равно 8



Задача №2CBB87

Постройте график функции y=x2-8x-4|x-3|+15 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика