Постройте график функции .
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Запишем Область Допустимых Значений (ОДЗ).
Так как на ноль делить нельзя, то 4x2-5x≠0
x(4x-5)≠0
1) x1≠0
2) 4x-5≠0 => x2≠1,25
Теперь можем упростить выражение:
График будет гиперболой, построим его по точкам:
X | 0,5 | 1 | 2 | -0,5 | -1 | -2 |
Y | 2 | 1 | 0,5 | -2 | -1 | -0,5 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b<0 2) k>0, b<0 3) k<0, b>0 4) k>0, b>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Установите соответствие между графиками функций и формулами, которые их задают. Впишите в приведённую в ответе таблицу под каждой буквой соответствующую цифру.
ФОРМУЛЫ | Графики | ||
1) y=-x2+7x-14 2) y=x2-7x+14 3) y=x2+7x+14 4) y=-x2-7x-14 |
A)![]() |
Б)![]() |
В)![]() |
Постройте график функции и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Постройте график функции y=x2-4|x|+2x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Две прямые пересекаются в точке C (см. рис.). Найдите абсциссу точки C.
Комментарии: