На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b<0 2) k>0, b<0 3) k<0, b>0 4) k>0, b>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Если прямая слева направо возрастает, то k>0 (как на графике А)), и наоборот, если прямая слева направо убывает, то k<0 (как на графиках Б) и В).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b.
Посмотрим на график и узнаем b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для графика А): k>0, b<0 - вариант 2)
Для графика Б): k<0, b<0 - вариант 1)
Для графика В): k<0, b>0 - вариант 3)
Ответ: А) - 2), Б) - 1), В) - 3)
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=x2-4|x|-2x и определите, при каких значениях m прямая y=m имеет с графиком не менее одной, но не более трёх общих точек.
На рисунке изображён график изменения атмосферного давления в городе Энске за три дня. По горизонтали указаны дни недели, по вертикали — значения атмосферного давления в миллиметрах ртутного столба. Укажите наименьшее значение атмосферного давления во вторник (мм рт. ст.).
Установите соответствие между функциями и их графиками.
ФУНКЦИИ | ГРАФИКИ | |
А) y=x2+4x+1 Б) y=x2-4x+1 В) y=-x2+4x-1 |
1) ![]() |
2) ![]() |
3) ![]() |
4) ![]() |
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Постройте график функции и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.
Комментарии: