Постройте график функции
x2, если |x|≤1
1/x, если |x|>1
и определите, при каких значениях c прямая y=c будет иметь с графиком единственную общую точку.
Чтобы построить график функции состоящей из двух подфункций, необходимо построить график каждой подфункции на указанных для них диапазонах и объединить эти графики.
Так как в данном примере диапазоны обозначены неравенствами с
функцией модуля, то сначала решим эти неравенства:
Функция |x| всегда принимает положительные значения, и |x| будет меньше или равен 1, когда -1≤х≤1, т.е. x⊂[-1;1].
Следовательно |x|>1 на всем остальном пространстве, т.е. x⊂(-∞;-1)∪(1;+∞).
Запишем получившуюся функцию:
x2, если x⊂[-1;1]
1/x, если x⊂(-∞;-1)∪(1;+∞)
Построим по точкам график обоих подфункций в указанных диапазонах:
x2, если x⊂[-1;1]
X | -1 | 0 | 1 |
Y | 1 | 0 | 1 |
X | -5 | -2 | -1 | 1 | 2 | 5 |
Y | -0,2 | -0,5 | -1 | 1 | 0,5 | 0,2 |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А)
Б)
В)
ФОРМУЛЫ
1) y=-2x-1
2) y=-2x+1
3) y=2x+1
В таблице под каждой буквой укажите соответствующий номер.
На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) a<0, c>0 2) a>0, c>0 3) a>0, c<0 4) a<0, c<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Функция убывает на промежутке [1; +∞)
2) Наименьшее значение функции равно -4
3) ƒ(-2)<ƒ(3)
Установите соответствие между функциями и их графиками.
ФУНКЦИИ | ГРАФИКИ | |
А) y=1/(9x) Б) y=9/x В) y=-9/x |
1) ![]() |
2) ![]() |
3) ![]() |
4) ![]() |
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=2x+4 2) y=-2x-4 3) y=2x-4 4) y=-2x+4 |
А) ![]() |
Б) ![]() |
В) ![]() |
Комментарии: