На рисунке изображены графики функций вида y=ax2+c. Установите соответствие между графиками и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | |||
1) a>0, c<0 2) a<0, c>0 3) a>0, c>0 4) a<0, c<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Г) ![]() |
Рассмотрим каждый график:
А) Ветви параболы направлены вверх, значит коэффициент а>0. Если х приравнять к нулю, то получим y=a*02+c, т.е. y=c.
На данном графике при x=0, y - положительный, следовательно и c>0.
Таким образом получаем, что данному графику соответствует ответ 3)
Б) Ветви параболы направлены вниз, значит a<0. При x=0, y - положительный, следовательно и c>0.
Соответствует ответу 2)
В) Ветви параболы направлены вверх, значит a>0. При x=0, y - отрицательный, следовательно и c<0.
Соответствует ответу 1)
Г) Ветви параболы направлены вниз, значит a<0. При x=0, y - отрицательный, следовательно и c<0.
Соответствует ответу 4)
Ответ: А) - 3), Б) - 2, В) - 1), Г) - 4)
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
На рисунке показано, как изменялась температура воздуха на протяжении одних суток. По горизонтали указано время суток, по вертикали — значение температуры в градусах Цельсия. Найдите разность между наибольшим и наименьшим значениями температуры в первой половине суток. Ответ дайте в градусах Цельсия.
Найдите p и постройте график функции y=x2+p, если известно, что прямая y=x имеет с графиком ровно одну общую точку.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=x2+4 2) y=-2x+4 3) y=-4/x |
А) ![]() |
Б) ![]() |
В) ![]() |
На графике изображена зависимость атмосферного давления от высоты
над уровнем моря. На горизонтальной оси отмечена высота над уровнем моря в километрах, на вертикальной — давление в миллиметрах ртутного столба. Определите по графику, чему равно атмосферное давление
на высоте 1 км над уровнем моря. Ответ дайте в миллиметрах ртутного столба.
Комментарии: