Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Область Допустимых Значений (ОДЗ):
Так как присутствует деление на (х-3), х≠3, так как деление на ноль невозможно.
X | 0 | 1 | 2 | 3 |
Y | 0 | 1 | 4 | 9 |
X | 0 | -1 | -2 |
Y | 0 | -1 | -4 |
Поделитесь решением
Присоединяйтесь к нам...
Известно, что графики функций y=x2+p и y=-2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ
А) k<0, b<0 Б) k>0, b>0 В) k<0, b>0
ГРАФИКИ
1)
2)
3)
Постройте график функции
и определите, при каких значениях m прямая y=m имеет с графиком одну или две общие точки.
На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Наибольшее значение функции равно 3
2) Функция убывает на промежутке (-∞;1]
3) ƒ(x)>0 при -1<x<3
Комментарии: