Известно, что графики функций y=x2+p и y=-2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Чтобы найти общую точку двух графиков, надо найти решение системы, составленное из уравнений этих графиков:
y=x2+p
y=-2x-2
x2+p=-2x-2
x2+2x+p+2=0
Это квадратное уравнение должно иметь только один корень, т.к. по условию, графики пересекаются только в одной точке. Следовательно, дискриминант должен быть равен нулю.
D=22-4*1*(p+2)=4-4p-8=-4-4p=0
p=-1
Получаем уравнение:
x2+2x-1+2=0
x2+2x+1=0
(x+1)2=0
x=-1 - это координата х точки пересечения.
y=-2x-2=-2*(-1)-2=0 - это координата y точки пересечения.
Получаем: координаты точки пересечения графиков (-1;0).
Построим графики по точкам:
y=x2+p=x2-1 (Красный график)
X | -2 | -1 | 0 | 1 | 2 |
Y | 3 | 0 | -1 | 0 | 3 |
X | -2 | -1 | 0 |
Y | 2 | 0 | -2 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке |
1) [2;3] 2) [-2;1] 3) [-1;2] 4) [1;2] |
На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) a>0, c>0 2) a>0, c<0 3) a<0, c>0 4) a<0, c<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=-x/2-1 2) y=-x/2+1 3) y=x/2+1 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции y=x+3|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Постройте график функции y=|x2-x-2|. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Комментарии: