Постройте график функции
и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.
Чтобы построить график этой функции, надо построить график каждой подфункции на указанных для подфункций диапазонах.
y1=5/x на диапазоне [1;+∞)
y2=x2+4x на диапазоне (-∞;1)
График первой подфункции (синий) - гипербола, строим его просто по точкам:
X | 1 | 2 | 5 |
Y | 5 | 2,5 | 1 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=2x+6|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А) y=-x2+2x+5
Б) y=x2+2x-5
В) y=-x2-2x+5
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции
Определите, при каких значениях m прямая y=m не имеет с графиком общих точек.
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке |
1) [-3;-2] 2) [-4;-2] 3) [-5;-4] 4) [-5;0] |
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
A)
Б)
В)
ФОРМУЛЫ
1) y=-x2
2) y=-x
3) y=-1/x
В таблице под каждой буквой укажите соответствующий номер.
Комментарии: