Постройте график функции
Определите, при каких значениях k прямая y=kx не имеет с графиком общих точек.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
Теперь надо построить график каждой подфункции в его границах и объединить их.
1) , при х≥0.
Напишем Область Допустимых Значений (ОДЗ).
Так как знаменатель не может равняться нулю, то x-3,5x2≠0
Вынесем "х" за скобку:
x(1-3,5x)≠0
Произведение равно нулю, когда один из множителей равен нулю, поэтому рассмотрим два случая:
1) x1≠0
2) 1-3,5x≠0
3,5x≠1
x≠1/3,5=2/7
Теперь можно упростить функцию:
График представляет из себя гиперболу, отметим несколько точек:
X | 0,5 | 1 | 2 |
Y | -2 | -1 | -0,5 |
X | -0,5 | -1 | -2 |
Y | -2 | -1 | -0,5 |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между графиками функций и формулами, которые их задают.
ФУНКЦИИ | ГРАФИКИ | ||
1) y=1/x 2) y=-x2-2 3) y=(1/2)x 4) y=-(1/2)x |
А) ![]() |
Б) ![]() |
В) ![]() |
Известно, что графики функций y=x2+p и y=-2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
На рисунке изображён график изменения атмосферного давления в городе Энске за три дня. По горизонтали указаны дни недели и время, по вертикали — значения атмосферного давления в миллиметрах ртутного столба. Укажите значение атмосферного давления во вторник в 18 часов.
Известно, что графики функций y=x2+p и y=2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии: