Постройте график функции
-x2, если |x|≤1
-1/x, если |x|>1
и определите, при каких значениях c прямая y=c будет иметь с графиком единственную общую точку.
Чтобы построить график функции состоящей из двух подфункций, необходимо построить график каждой подфункции на указанных для них диапазонах и объединить эти графики.
Так как в данном примере диапазоны обозначены неравенствами с
функцией модуля, то сначала решим эти неравенства:
Функция |x| всегда принимает положительные значения, и |x| будет меньше или равен 1, когда -1≤х≤1, т.е. x⊂[-1;1].
Следовательно |x|>1 на всем остальном пространстве, т.е. x⊂(-∞;-1)∪(1;+∞).
Запишем получившуюся функцию:
-x2, если x⊂[-1;1]
-1/x, если x⊂(-∞;-1)∪(1;+∞)
Построим по точкам график обоих подфункций в указанных диапазонах:
-x2, если x⊂[-1;1]
X | -1 | 0 | 1 |
Y | -1 | -1 |
X | -5 | -2 | -1 | 1 | 2 | 5 |
Y | 0,2 | 0,5 | 1 | -1 | -0,5 | -0,2 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=4|x-3|-x2+8x-15 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Постройте график функции
Определите, при каких значениях k прямая y=kx не имеет с графиком общих точек.
На графике изображена зависимость атмосферного давления (в миллиметрах ртутного столба) от высоты над уровнем моря (в километрах). На какой высоте (в км) летит воздушный шар, если барометр, находящийся в корзине шара, показывает давление 220 миллиметров ртутного столба?
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b<0 2) k>0, b<0 3) k<0, b>0 4) k>0, b>0 |
А) | Б) | В) |
Установите соответствие между графиками функций и формулами, которые их задают.
ФУНКЦИИ | ГРАФИКИ | ||
1) y=-(2/x) 2) y=x2-2 3) y=2x 4) y=2/x |
А) | Б) | В) |
Комментарии: