Постройте график функции
Определите, при каких значениях k прямая y=kx не имеет с графиком общих точек.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
Теперь надо построить график каждой подфункции в его границах и объединить их.
1) , при х≥0.
Напишем Область Допустимых Значений (ОДЗ).
Так как знаменатель не может равняться нулю, то x-4,5x2≠0
Вынесем "х" за скобку:
x(1-4,5x)≠0
Произведение равно нулю, когда один из множителей равен нулю, поэтому рассмотрим два случая:
1) x1≠0
2) 1-4,5x≠0
4,5x≠1
x≠1/4,5=2/9
Теперь можно упростить функцию:
График представляет из себя гиперболу, отметим несколько точек:
X | 0,5 | 1 | 2 |
Y | -2 | -1 | -0,5 |
X | -0,5 | -1 | -2 |
Y | -2 | -1 | -0,5 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.
Постройте график функции и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) f(-1)=f(3)
2) Наибольшее значение функции равно 3
3) f(x)>0 при -1<x<3
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Комментарии: