Юмор

Автор: Катя
- Вовочка, у тебя в кармане сто рублей, ты попросил у отца еще сто, сколько у тебя будет д...читать далее

ОГЭ, 9-й класс. Математика: Функции


Задача №208 из 221. Номер задачи на WWW.FIPI.RU - 9E1F7F


Известно, что графики функций y=x2+p и y=2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.

Решение задачи:

Чтобы найти общую точку двух графиков, надо найти решение системы, составленное из уравнений этих графиков:
y=x2+p
y=2x-2

x2+p=2x-2
x2-2x+p+2=0
Это квадратное уравнение должно иметь только один корень, т.к. по условию, графики пересекаются только в одной точке. Следовательно, дискриминант должен быть равен нулю.
D=(-2)2-4*1*(p+2)=4-4p-8=-4-4p=0
p=-1
Получаем уравнение:
x2-2x-1+2=0
x2-2x+1=0
(x-1)2=0
x=1 - это координата х точки пересечения.
y=2x-2=2*1-2=0 - это координата y точки пересечения.
Получаем: координаты точки пересечения графиков (1;0).
Построим графики по точкам:
y=x2+p=x2-1 (Красный график)

X -2 -1 0 1 2
Y 3 0 -1 0 3
y=2x-2 (Синий график)
X 0 1 2
Y -2 0 2
Ответ: (1;0)

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Функции' (от 1 до 221)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2018. Все права защищены. Яндекс.Метрика