Известно, что графики функций y=x2+p и y=2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Чтобы найти общую точку двух графиков, надо найти решение системы, составленное из уравнений этих графиков:
y=x2+p
y=2x-2
x2+p=2x-2
x2-2x+p+2=0
Это квадратное уравнение должно иметь только один корень, т.к. по условию, графики пересекаются только в одной точке. Следовательно, дискриминант должен быть равен нулю.
D=(-2)2-4*1*(p+2)=4-4p-8=-4-4p=0
p=-1
Получаем уравнение:
x2-2x-1+2=0
x2-2x+1=0
(x-1)2=0
x=1 - это координата х точки пересечения.
y=2x-2=2*1-2=0 - это координата y точки пересечения.
Получаем: координаты точки пересечения графиков (1;0).
Построим графики по точкам:
y=x2+p=x2-1 (Красный график)
X | -2 | -1 | 0 | 1 | 2 |
Y | 3 | 0 | -1 | 0 | 3 |
X | 0 | 1 | 2 |
Y | -2 | 0 | 2 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=|x2+5x+6| . Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+4 ровно одну общую точку. Постройте этот график и все такие прямые.
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке |
1) [-4;-2] 2) [-1;0] 3) [-2;-1] 4) [-2;0] |
Постройте график функции y=2x+4|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
На графиках показано, как во время телевизионных дебатов между кандидатами А и Б телезрители голосовали за каждого из них. Сколько всего тысяч телезрителей проголосовало за первые 40 минут дебатов?
Комментарии: