Постройте график функции y=x+3|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x+3x-x2, при x≥0
x+3(-x)-x2, при x<0
-x2+4x, при x≥0
-x2-2x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=-x2+4x, при x≥0 (красный график)
X | 0 | 1 | 2 | 3 | 4 |
Y | 0 | 3 | 4 | 3 | 0 |
X | 0 | -1 | -2 | -3 |
Y | 0 | 1 | 0 | -4 |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
При работе фонарика батарейка постепенно разряжается и напряжение
в электрической цепи фонарика падает. На графике показана зависимость напряжения в цепи от времени работы фонарика. На горизонтальной оси отмечено время работы фонарика в часах, на вертикальной оси — напряжение в вольтах. Определите по графику, за сколько часов работы фонарика напряжение упадёт с 1,6 В до 1 В.
Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+0,25 ровно одну общую точку. Постройте этот график и все такие прямые.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b<0 2) k<0, b>0 3) k>0, b>0 4) k>0, b<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Известно, что графики функций y=x2+p и y=2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Комментарии: