Укажите номера верных утверждений.
1) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
2) Смежные углы равны.
3) Медиана равнобедренного треугольника, проведённая к его основанию, является его высотой.
Рассмотрим каждое утверждение.
1) "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники
подобны", это утверждение верно по
признаку подобия треугольников.
2) "Смежные углы равны", это утверждение неверно. По
определению, сумма смежных углов равна 180°, поэтому они будут равны только в одном случае, когда равны 90 градусам. В остальных случаях, смежные углы не равны.
3) "Медиана равнобедренного треугольника, проведённая к его основанию, является его высотой", это утверждение верно. Это
свойство равнобедренного треугольника.
Поделитесь решением
Присоединяйтесь к нам...
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите AB, если BC=34.
Основания BC и AD трапеции ABCD равны соответственно 4 и 64, BD=16. Докажите, что треугольники CBD и ADB подобны.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 45° и 25°. Найдите больший угол параллелограмма.
Какие из данных утверждений верны? Запишите их номера.
1) Любой параллелограмм можно вписать в окружность.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Точка пересечения двух окружностей равноудалена от центров этих окружностей.
Найдите тангенс угла AOB, изображённого на рисунке.
Комментарии: