ОГЭ, Математика. Геометрия: Задача №CE7435 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №CE7435

Задача №641 из 1087
Условие задачи:

В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=1°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.

Решение задачи:

Обозначим точку пересечения диагоналей как О.
По свойству параллелограмма AO=OC=AC/2.
AB=CD (по другому свойству).
А так как AC в 2 раза больше стороны AB (по условию задачи), то OC=AB=CD.
Следовательно треугольник OCD - равнобедренный.
По свойству равнобедренного треугольника /COD=/CDO.
По теореме о сумме углов треугольника:
180°=∠COD+∠CDO+∠ACD=∠COD+CDO+1°
∠COD+∠CDO=179°, а так как ∠COD=∠CDO (это мы выяснили ранее), то ∠COD=∠CDO=179°/2=89,5°
Второй угол между диагоналями:
∠BOC=180°-∠COD (т.к. угол BOD - развернутый и равен 180°)
∠BOC=180°-89,5°=90,5°
Ответ: ∠COD=89,5°, ∠BOC=90,5°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №2657CA

Косинус острого угла A треугольника ABC равен . Найдите sinA.



Задача №33759E

Катеты прямоугольного треугольника равны 30 и 40. Найдите гипотенузу этого треугольника.



Задача №524060

В треугольнике ABC известно, что AB=BC, ∠ABC=122°. Найдите угол BCA. Ответ дайте в градусах.



Задача №F47E4F

Стороны AC, AB, BC треугольника ABC равны 25, 11 и 2 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если ∠KAC>90°.



Задача №CF5F48

Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.

Комментарии:


(2015-05-16 20:21:28) Светлана: За угол между двумя пересекающимися прямыми принято принимать меньший.Так что ответ определяется однозначно.
(2015-05-11 20:27:58) Администратор: По логике да, два ответа, но как лучше писать на экзамене, уточните у своего педагога по математике.
(2015-05-11 17:25:44) : Здесь получается два ответа?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика