В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=1°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.
Обозначим точку пересечения диагоналей как О.
По
свойству
параллелограмма AO=OC=AC/2.
AB=CD (по
другому свойству).
А так как AC в 2 раза больше стороны AB (по условию задачи), то OC=AB=CD.
Следовательно треугольник OCD -
равнобедренный.
По
свойству равнобедренного треугольника /COD=/CDO.
По
теореме о сумме углов треугольника:
180°=∠COD+∠CDO+∠ACD=∠COD+CDO+1°
∠COD+∠CDO=179°, а так как ∠COD=∠CDO (это мы выяснили ранее), то ∠COD=∠CDO=179°/2=89,5°
Второй угол между диагоналями:
∠BOC=180°-∠COD (т.к. угол BOD - развернутый и равен 180°)
∠BOC=180°-89,5°=90,5°
Ответ: ∠COD=89,5°, ∠BOC=90,5°
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 34, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Точка О – центр окружности, /AOB=72° (см. рисунок). Найдите величину угла ACB (в градусах).
На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=52°. Ответ дайте в градусах.
Стороны AC, AB, BC треугольника ABC равны 3√
Комментарии:
(2015-05-16 20:21:28) Светлана: За угол между двумя пересекающимися прямыми принято принимать меньший.Так что ответ определяется однозначно.
(2015-05-11 20:27:58) Администратор: По логике да, два ответа, но как лучше писать на экзамене, уточните у своего педагога по математике.
(2015-05-11 17:25:44) : Здесь получается два ответа?