Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 5.
Площадь
трапеции вычисляется по формуле , где a и b - основания трапеции,
а h - высота трапеции. Обозначим углы трапеции A, B, C и D. И проведем высоту из угла B к основанию AD, как паказано на рисунке.
Получившийся треугольник ABP -
прямоугольный c катетами BP и AP. Заметим, что BP - это катет притиволежащий углу в 30°, следовательно он равен половине
гипотенузы (
по свойству прямоугольного треугольника), h=4/2=2. Используя формулу площади трапеции получаем S=(2+5)*2/2.
Вычисляем S=7.
Ответ: S=7.
Поделитесь решением
Присоединяйтесь к нам...
На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку E . Докажите, что сумма площадей треугольников BEC и AED равна половине площади трапеции.
В треугольнике ABC угол C прямой, AC=9, cosA=0,3. Найдите AB.
Укажите номера верных утверждений.
1) Существует ромб, который не является квадратом.
2) Если две стороны треугольника равны, то равны и противолежащие им углы.
3) Касательная к окружности параллельна радиусу, проведённому в точку касания.
Площадь параллелограмма ABCD равна 30. Точка E – середина стороны CD. Найдите площадь трапеции ABED.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=10 и MB=18. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии:
(2015-05-25 18:11:21) Lina: Огромное спасибо
(2015-05-21 18:06:36) Динар: Спасибо
(2015-05-16 09:40:34) : SPS
(2015-03-21 16:07:42) Анна: замечательно!!!!