ОГЭ, Математика. Функции: Задача №3B15C1 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Функции: Задача №3B15C1

Задача №89 из 287
Условие задачи:

Известно, что графики функций y=x2+p и y=2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.

Решение задачи:

Чтобы найти общую точку двух графиков, надо найти решение системы, составленное из уравнений этих графиков:
y=x2+p
y=2x-2

x2+p=2x-2
x2-2x+p+2=0
Это квадратное уравнение должно иметь только один корень, т.к. по условию, графики пересекаются только в одной точке. Следовательно, дискриминант должен быть равен нулю.
D=(-2)2-4*1*(p+2)=4-4p-8=-4-4p=0
p=-1
Получаем уравнение:
x2-2x-1+2=0
x2-2x+1=0
(x-1)2=0
x=1 - это координата х точки пересечения.
y=2x-2=2*1-2=0 - это координата y точки пересечения.
Получаем: координаты точки пересечения графиков (1;0).
Построим графики по точкам:
y=x2+p=x2-1 (Красный график)

X -2 -1 0 1 2
Y 3 0 -1 0 3
y=2x-2 (Синий график)
X 0 1 2
Y -2 0 2
Ответ: (1;0)

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1C1654

Известно, что графики функций y=x2+p и y=-2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.



Задача №DC01C3

Постройте график функции

Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.



Задача №067E18

На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.

КОЭФФИЦИЕНТЫ ГРАФИКИ
1) a>0, c<0
2) a<0, c<0
3) a>0, c>0
4) a<0, c>0
А) Б) В)



Задача №DE232E

Постройте график функции
.
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.



Задача №06321F

Постройте график функции y=x2-5|x|+4. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика