На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке |
1) [2;3] 2) [-2;1] 3) [-1;2] 4) [1;2] |
Функция возрастает на неком промежутке, если на этом промежутке для любых x1>x2, верно, что y(x1)>y(x2).
И наоборот, функция убывает на неком промежутке, если на этом промежутке для любых x1>x2, верно, что y(x1)<y(x2).
Данная функция возрастает на промежутке (-∞;1,5], следовательно и на промежутке [-2;1] тоже возрастает.
Функция убывает на промежутке (1,5;+∞), следовательно и на промежутке [2;3] тоже убывает.
Остальные промежутки не подходят.
Ответ: А)-2), Б)-1)
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=x2-8x-4|x-3|+15 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Постройте график функции y=x2-6|x|+2x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Установите соответствие между функциями и их графиками.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | |||
А) y=-2x+4 Б) y=2x-4 В) y=2x+4 |
1) | 2) | 3) | 4) |
Постройте график функции y=|x|(x+1)-5x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Комментарии: