На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k<0, b>0 Б) k>0, b<0 В) k<0, b<0 |
1) ![]() |
2) ![]() |
3) ![]() |
Если прямая слева направо возрастает, то k>0 (как на графике 1)), и наоборот, если прямая слева направо убывает, то k<0 (как на графиках 2) и 3).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b.
Посмотрим на график и узнаем b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для графика 1): k>0, b<0 - вариант Б)
Для графика 2): k<0, b<0 - вариант B)
Для графика 3): k<0, b>0 - вариант А)
Ответ: 1) - Б), 2) - В), 3) - А)
Поделитесь решением
Присоединяйтесь к нам...
На рисунке показано, как изменялась температура на протяжении одних суток. По горизонтали указано время суток, по вертикали – значение температуры в градусах Цельсия. Сколько часов во второй половине суток температура превышала 10°C?
На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Наибольшее значение функции равно 3
2) Функция убывает на промежутке (-∞;1]
3) ƒ(x)>0 при -1<x<3
Известно, что графики функций y=x2+p и y=2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Постройте график функции y=2x+6|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке |
1) [2;3] 2) [-2;1] 3) [-1;2] 4) [1;2] |
Комментарии: