Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+4 ровно одну общую точку. Постройте этот график и все такие прямые.
Две функции имеют точку пересечения, это означает, что графики обеих функций имеют общую точку. Следовательно, надо составить систему и решить ее:
y=x2+4
y=kx
kx=x2+4
x2-kx+4=0
Найдем корни этого уравнения:
D=(-k)2-4*1*4=k2-16
В условии сказано, что точка пересечения только одна, следовательно корень уравнения должен быть только один. Это условие выполняется, когда дискриминант равен нулю:
D=k2-16=0
k2-16=0
k2-42=0
(k-4)(k+4)=0
k1=4
k2=-4
Построим графики по точкам:
Получаем функции:
y=x2+4
y=4x
y=-4x
Ответ: k1=4, k2=-4
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=2/5x+2 2) y=2/5x-2 3) y=-2/5x-2 4) y=-2/5x+2 |
А) ![]() |
Б) ![]() |
В) ![]() |
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) f(-1)=f(3)
2) Наибольшее значение функции равно 3
3) f(x)>0 при -1<x<3
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k>0, b>0 Б) k>0, b<0 В) k<0, b>0 |
1) ![]() |
2) ![]() |
3) ![]() |
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k>0, b<0 Б) k>0, b>0 В) k<0, b>0 |
1) ![]() |
2) ![]() |
3) ![]() |
Комментарии: