Человек, рост которого равен 1,6 м, стоит на расстоянии 3 м от уличного фонаря. При этом длина тени человека равна 2 м. Определите высоту фонаря (в метрах).
Перерисуем данный рисунок в виде треугольников и обозначим интересующие нас точки.
Рассмотрим треугольники ABC и DCE, эти треугольники
подобны, т.к. /C - общий, /B и /DEC - прямые, а углы A и EDC - равны, так как являются
соответственними.
Из подобия этих треугольников следует, что AB/DE=BC/EC, отсюда AB=(BC*DE)/EC=((3+2)*1,6)/2=4.
Ответ: высота фонаря равна 4 м.
Поделитесь решением
Присоединяйтесь к нам...
Катет и гипотенуза прямоугольного треугольника равны 15 и 39. Найдите высоту, проведенную к гипотенузе.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 8.
Центральный угол AOB опирается на хорду АВ длиной 6. При этом угол ОАВ равен 60°. Найдите радиус окружности.
Найдите площадь параллелограмма, изображённого на рисунке.
Сторона квадрата равна 9√2. Найдите диагональ этого квадрата.
Комментарии:
(2018-02-14 17:44:00) : рост человека 1.6 м стоит на расстоянии 3 м от столба длина тени человека 2 метра . длина фонаря