Сторона квадрата равна 9√2. Найдите диагональ этого квадрата.
По
первому свойству квадрата, все его углы прямые, следовательно, треугольники, которые образует диагональ, прямоугольные.
Т.е. к этим треугольникам можно применить теорему Пифагора.
По определению квадрата, все его стороны равны, следовательно катеты этих треугольников равны:
d2=(9√2)2+(9√2)2
d2=2(9√2)2
По первому правилу действий со степенями:
d2=2*92(√2)2
d2=2*81*2=324
d=√324=18
Ответ: 18
Поделитесь решением
Присоединяйтесь к нам...
Отрезок AB=32 касается окружности радиуса 24 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
В треугольнике ABC угол C равен 90°, M — середина стороны AB, AB=60, BC=40. Найдите CM.
В ромбе ABCD угол ABC равен 72°. Найдите угол ACD. Ответ дайте в градусах.
На стороне AB треугольника ABC взята такая точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=40, BC=45 и CD=24.
На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 9 м, высота фонаря 4 м?
Комментарии: