Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN
и CM пересекаются в точке O, AN=27, CM=9. Найдите AO.
Отрезки AN и CM - являются
медианами треугольника ABC.
Тогда, применяя первое свойство медианы, можем записать:
AO/ON=2/1, т.е. ON=AO/2
При этом AN=AO+ON
27=AO+ON, подставляем в это уравнение первое равенство:
27=AO+AO/2 |*2
54=2AO+AO
54=3AO
AO=18
Ответ: 18
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C прямой, BC=9, sinA=0,3. Найдите AB.
На прямой AB взята точка M. Луч MD – биссектриса угла CMB. Известно, что /DMC=60°. Найдите угол CMA. Ответ дайте в градусах.
Площадь прямоугольного треугольника равна 2√
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 154°. Найдите угол C. Ответ дайте в градусах.
Основания трапеции равны 9 и 54, одна из боковых сторон равна 27, а косинус угла между ней и одним из оснований равен √
Комментарии: