Периметр треугольника равен 48, одна из сторон равна 18,
а радиус вписанной в него окружности равен 3. Найдите площадь этого треугольника.
По третьему свойству вписанной окружности, радиус вписанной окружности равен:
r=S/p, где S - площадь треугольника, а p - полупериметр.
p=48/2=24
S=r*p=3*24=72
Ответ: 72
Поделитесь решением
Присоединяйтесь к нам...
Площадь прямоугольного треугольника равна 882√
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=32.
Докажите, что медиана треугольника делит его на два треугольника, площади которых равны между собой.
Синус острого угла A треугольника ABC равен
. Найдите CosA.
На окружности с центром в точке O отмечены точки A и B так, что ∠AOB=66°. Длина меньшей дуги AB равна 99. Найдите длину большей дуги AB.
Комментарии:
(2023-04-26 20:11:27) галина: есть ли другое решение задачи 936 из1087 для чего дается сторона
(2023-04-26 20:03:19) галина: все свойства вписанной окружности