Две касающиеся внешним образом в точке K окружности, радиусы которых равны 31 и 32, касаются сторон угла с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.
Проведем несколько отрезков:
EH - радиус малой окружности. Он перпендикулярен AB (по
свойству касательной).
FG - радиус большой окружности. Он перпендикулярен AB (по
свойству касательной).
HG - отрезок, соединяющий центры окружностей и равный R+r, так как он проходит через точку К.
Рассмотрим треугольники AFG и AEH:
∠EAH - общий;
углы AEH и AFG - прямые.
Следовательно эти треугольники
подобны, тогда:
FG/EH=AG/AH
FG/EH=(AH+HG)/AH
32/31=(AH+R+r)/AH
32AH=31(AH+63)
32AH-31AH=1953
AH=1953
sin∠EAH=EH/AH=31/1953=1/63
AK=AH+r=1953+31=1984
AK перпендикулярен BC, т.к. это продолжение большого и малого радиусов, а AB -
касательная (
свойство касательной). AK делит хорду AB пополам (по
свойству хорды).
Треугольник ABC -
равнобедренный, т.к. AK - и
медиана и
высота (
свойство равнобедренного треугольника).
Теперь уберем из рисунка все, что нас больше не интересует и резюмируем, что мы знаем:
AK=1984
sinα=1/63
Так как AK -
биссектриса, то центр описанной окружности находится на AK.
Найдем AB.
По
теореме Пифагора:
AB2=AK2+BK2
AB2=AK2+(AB*sinα)2
AB2-AB2*sin2α=
19842
AB2(1-1/632)=19842
AB2(632-1)=632*19842
AB2=632*19842/(632-1)
Рассмотрим треугольник AOB.
AO=OB, так как это радиусы окружности, следовательно данный треугольник
равнобедренный.
Проведем высоту ON, в
равнобедренном треугольнике она так же является и
медианой (по
свойству равнобедренного треугольника).
sinα=ON/AO => ON=AO/63
По теореме
Пифагора:
AO2=ON2+AN2
AO2=AO2/632+(AB/2)2
AO2-AO2/632=AB2/4
AO2(1-1/632)=AB2/4
AO2((632-1)/632)=(632*19842/(632-1))/4
4AO2=632*19842/(632-1)/((632-1)/632)=632*19842*632/(632-1)2
2AO=632*1984/(632-1)
2AO=3969*1984/3968=3969/2=1984,5
AO=992,25
Ответ: 992,25
Поделитесь решением
Присоединяйтесь к нам...
В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.
Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?
Радиус окружности, вписанной в трапецию, равен 24. Найдите высоту этой трапеции.
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=25°. Найдите величину угла BOC. Ответ дайте в градусах.
Комментарии:
(2017-03-21 19:51:48) Администратор: Мария, конечно это опечатка, спасибо большое, что заметили. Исправлено.
(2017-03-19 18:42:33) Мария: АК не может быть перпендикулярен АВ!!! может быть ВС?