На стороне AC треугольника ABC отмечена точка D так, что AD=3, DC=7. Площадь треугольника ABC равна 20. Найдите площадь треугольника BCD.
Для вычисления площади треугольника существует несколько формул. Ни для одной из них у нас не хватает данных.
Значит недостающие данные надо получить.
Посмотрим, что общее есть у треугольников ABC и BCD:
1. Сторона BC
2. Угол BCD.
Тогда лучше воспользоваться
формулой "через две стороны и угол между ними".
Площадь треугольника ABC:
SABC=(1/2)*AC*BC*sin∠BCD
SABC=(1/2)*(AD+DC)*BC*sin∠BCD
20=(1/2)*(3+7)*BC*sin∠BCD
20=(1/2)*10*BC*sin∠BCD
20=5*BC*sin∠BCD
BC*sin∠BCD=4
Площадь треугольника BCD:
SBCD=(1/2)*DC*BC*sin∠BCD
Подставляем значение BC*sin∠BCD, полученное ранее, и значение DC, известное из условия:
SBCD=(1/2)*7*4
SBCD=14
Ответ: 14
Поделитесь решением
Присоединяйтесь к нам...
В равнобедренной трапеции основания равны 2 и 8, а один из углов между боковой стороной и основанием равен
45°. Найдите площадь трапеции.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=19, а расстояние от точки K до стороны AB равно 7.
В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём СF = АM, BE = DK. Докажите, что EFKM — параллелограмм.
Какие из данных утверждений верны? Запишите их номера.
1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
2) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.
3) Площадь круга меньше квадрата длины его диаметра.
Лестница соединяет точки A и B и состоит из 15 ступеней. Высота каждой ступени равна 28 см, а длина – 96 см. Найдите расстояние между точками A и B (в метрах).
Комментарии: