ОГЭ, Математика. Геометрия: Задача №4F1471 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №4F1471

Задача №932 из 1084
Условие задачи:

На стороне AC треугольника ABC отмечена точка D так, что AD=3, DC=7. Площадь треугольника ABC равна 20. Найдите площадь треугольника BCD.

Решение задачи:

Для вычисления площади треугольника существует несколько формул. Ни для одной из них у нас не хватает данных.
Значит недостающие данные надо получить.
Посмотрим, что общее есть у треугольников ABC и BCD:
1. Сторона BC
2. Угол BCD.
Тогда лучше воспользоваться формулой "через две стороны и угол между ними".
Площадь треугольника ABC:
SABC=(1/2)*AC*BC*sin∠BCD
SABC=(1/2)*(AD+DC)*BC*sin∠BCD
20=(1/2)*(3+7)*BC*sin∠BCD
20=(1/2)*10*BC*sin∠BCD
20=5*BC*sin∠BCD
BC*sin∠BCD=4
Площадь треугольника BCD:
SBCD=(1/2)*DC*BC*sin∠BCD
Подставляем значение BC*sin∠BCD, полученное ранее, и значение DC, известное из условия:
SBCD=(1/2)*7*4
SBCD=14
Ответ: 14

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №BE1FC6

На отрезке AB выбрана точка C так, что AC=75 и BC=10. Построена окружность с центром A, проходящая через C. Найдите длину касательной, проведённой из точки B к этой окружности.



Задача №054ABA

Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 31.



Задача №BFF02E

В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника CMD.



Задача №23E335

Радиус окружности, описанной около равностороннего треугольника, равен 16. Найдите высоту этого треугольника.



Задача №FB6FF2

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика