В треугольнике ABC угол C равен 90°, BC=3, AB=5. Найдите cosB.
По
определению косинуса:
cosB=BC/AB=3/5=0,6
Ответ: 0,6
Поделитесь решением
Присоединяйтесь к нам...
На окружности с центром O отмечены точки A и B так, что
/AOB=66°. Длина меньшей дуги AB равна 99. Найдите длину большей дуги.
Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=14.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 6:5. Найдите отношение площади треугольника AKM к площади четырёхугольника KPCM.
Четырёхугольник ABCD описан около окружности, AB=9, BC=13, CD=18. Найдите AD.
В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=1°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.
Комментарии: