Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=21, MN=14. Площадь треугольника ABC равна 27. Найдите площадь треугольника MBN.
Рассмотрим треугольники ABC и MBN.
∠ABC - общий.
∠BAC=∠BMN
Следовательно, по первому признаку подобия, эти треугольники подобны.
Площади треугольника ABC:
SABC=(1/2)AC*h1
27=(1/2)*21*h1
h1=27*2/21=54/21=18/7
Из подобия треугольников получаем пропорцию:
AC/MN=h1/h2
Тогда площадь треугольника MBN:
SMBN=(1/2)MN*h2
Ответ: 12
Поделитесь решением
Присоединяйтесь к нам...
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=3, AD=7, AC=20. Найдите AO.
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите AB, если BC=28.
Площадь прямоугольного треугольника равна 18√
Медиана равностороннего треугольника равна 13√3. Найдите его сторону.
Комментарии: