Площадь параллелограмма ABCD равна 140. Точка E — середина стороны AB. Найдите площадь треугольника CBE.
Проведем перпендикулярный отрезок от одной стороны
параллелограмма к другой через точку Е, как показано на рисунке.
Обозначим концы отрезка как F и G.
FG - высота параллелограмма, так как перпендикулярен двум сторонам (мы сами так его провели).
Площадь параллелограмма:
SABCD=FG*AD=FG*BC
Рассмотрим треугольники AEG и BEF:
AE=EB (по условию задачи).
∠AEG=∠BEF (они вертикальные).
∠GAE=∠FBE (они накрест-лежащие).
Тогда, по второму признаку равенства треугольников, данные треугольники равны.
Это означает, что EF=EG=FG/2
EF - высота треугольника CBE.
Воспользуемся формулой
площади треугольника через высоту и основание:
Ответ: 35
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь квадрата, описанного вокруг окружности радиуса 83.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=11, а расстояние от точки K до стороны AB равно 3.
Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 48, а площадь равна 288.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=8, CK=13.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.
Комментарии:
(2022-10-06 01:54:59) : в треугольнике авс с равен 114 сторонв ас и вс равны найдите угол в. ответ дайте в градусах