ОГЭ, Математика. Функции: Задача №2CBB87 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Функции: Задача №2CBB87

Задача №164 из 285
Условие задачи:

Постройте график функции y=x2-8x-4|x-3|+15 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.

Решение задачи:

В данной функции присутствуем модуль, следовательно функцию надо разложить на две функции, в зависимости от значения модуля:
|x-3|=x-3, при x-3≥0 (т.е. x≥3)
|x-3|=-(x-3), при х-3<0 (т.е. х<3)
Тогда вся функция будет выглядеть так:
x2-8x-4(x-3)+15, при x≥3
x2-8x-4(-(x-3))+15, при x<3
x2-8x-4x+12+15, при x≥3
x2-8x-4(-x+3)+15, при x<3
x2-12x+27, при x≥3
x2-8x+4x-12+15, при x<3
x2-12x+27, при x≥3
x2-4x+3, при x<3
График обеих подфункций - парабола, у обеих подфункций коэффициент "а" равен 1, т.е. больше нуля. Следовательно, ветви обеих парабол направлены вверх.
Построим по точкам графики обеих подфункций, но первый график на диапазоне от 3 до +∞, а второй график на диапазоне от -∞ до 3 (как указано в системе).
Подфункция y=x2-12x+27 (Красный график)

X 3 4 5 6 7 8
Y 0 -5 -8 -9 -8 -5
Подфункция y=x2-4x+3 (Синий график)
X 3 2 1 0 -1
Y 0 -1 0 3 8
Три общие точки с прямой y=m будут только в двух случаях:
1) Когда прямая проходит через точку "излома" функции, как показано на рисунке m1=0.
2) Когда прямая касается вершины синей функции, т.е. нам надо найти координаты вершины:
x0=-b/2a=-(-4)/(2*1)=4/2=2
y0=22-4*2+3=4-8+3=-1 - это и есть m2.
Ответ: m1=0, m2=-1

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №60EA22

Постройте график функции y=2x+4|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.



Задача №92985D

Постройте график функции

Определите, при каких значениях k прямая y=kx не имеет с графиком общих точек.



Задача №4B67C6

На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.

УТВЕРЖДЕНИЯ ПРОМЕЖУТКИ
А) Функция возрастает на промежутке
Б) Функция убывает на промежутке
1) [0; 2]
2) [2; 5]
3) [4; 7]
4) [1; 7]



Задача №C0274A

На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Функция убывает на промежутке [-1;+∞)
2) ƒ(x)>0 при x<-4 и при x>2
3) Наименьшее значение функции равно -9



Задача №2C5329

Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+0,25 ровно одну общую точку. Постройте этот график и все такие прямые.

Комментарии:


(2017-04-26 18:55:38) Администратор: Владислав, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-04-26 17:46:17) Владислав: y=x²-4|x|+x Решение

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика