На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке | 1) [2;5] 2) [0;1] 3) [-3;-1] 4) [-2;2] |
Функция возрастает на неком промежутке, если на этом промежутке для любых x1>x2, верно, что y(x1)>y(x2).
И наоборот, функция убывает на неком промежутке, если на этом промежутке для любых x1>x2, верно, что y(x1)<y(x2).
Данная функция возрастает на промежутке [0,5;+∞), следовательно и на промежутке [2;5] тоже возрастает.
Функция убывает на промежутке (-∞;0,5), следовательно и на промежутке [-3;-1] тоже убывает.
Остальные промежутки не подходят.
Ответ: А)-1), Б)-3)
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции
Определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ
А) k<0, b<0 Б) k>0, b>0 В) k<0, b>0
ГРАФИКИ
1)
2)
3)
На графике изображена зависимость атмосферного давления от высоты
над уровнем моря. На горизонтальной оси отмечена высота над уровнем моря в километрах, на вертикальной — давление в миллиметрах ртутного столба. Определите по графику, на какой высоте атмосферное давление равно 620 миллиметрам ртутного столба. Ответ дайте в километрах.
Постройте график функции
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Две прямые пересекаются в точке C (см. рис.). Найдите абсциссу точки C.
Комментарии: