Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А) y=-x2-5x-2
Б)
В)
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Рассмотрим функции:
А) y=-x2-5x-2 - квадратичная функция. График любой квадратичной функции парабола. Т.е. подходит график 3).
Б) - степенная функция (или обратно пропорциональная). Ее график гипербола. Т.е. подходит график 1).
В) - линейная функция - прямая. График 2).
Если вы сомневаетесь и хотите себя перепроверить, правильно ли вы определили соответствие, то можно поступить следующим способом (для примера проверим для функции -x2-5x-2):
1. Приравняем х, например, к нулю.
2. Подставляем 0 в функцию: y=-02-5*0-2=-2.
3. Проверяем, какому из предложенных графиков принадлежит точка (0;-2).
4. Очевидно, что подходит только график 3).
Если x=0 не очень удобное значение, возьмите любое другое, легкое для вычисления значения функции.
ФУНКЦИИ | А) | Б) | В) |
ГРАФИКИ | 3) | 1) | 2) |
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке | 1) [2;5] 2) [0;1] 3) [-3;-1] 4) [-2;2] |
Постройте график функции y=|x|(x+1)-6x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке показано, как изменялась температура на протяжении одних суток. По горизонтали указано время суток, по вертикали – значение температуры в градусах Цельсия. Сколько часов во второй половине суток температура превышала 10°C?
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Наименьшее значение функции равно -8
2) f(-4)>f(1)
3) f(x)<0 при -4<x<2
Известно, что графики функций y=x2+p и y=2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Комментарии: