Постройте график функции y=x2-6|x|-2x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x2-6x-2x, при x≥0
x2-6(-x)-2x, при x<0
x2-8x, при x≥0
x2+4x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=x2-8x, при x≥0
X | 0 | 1 | 2 | 3 | 4 | 5 |
Y | 0 | -7 | -12 | -15 | -16 | -15 |
X | 0 | -1 | -2 | -3 | -4 | -5 |
Y | 0 | -3 | -4 | -3 | 0 | 5 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b..
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b<0 2) k>0, b<0 3) k<0, b>0 4) k>0, b>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k>0, b>0 2) k<0, b>0 3) k>0, b<0 4) k<0, b<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
На рисунке изображена функция вида y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ
А) Функция возрастает на промежутке
Б) Функция убывает на промежутке
ПРОМЕЖУТКИ
1) [0;3]
2) [-1;1]
3) [2;4]
4) [1;4]
Комментарии:
(2019-09-17 10:19:09) Администратор: Алина, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправьте заявку на добавление задачи, и мы ее обязательно добавим.
(2019-06-06 13:26:03) Алина: у=х2 -3х +3|х+2|+2