На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k>0, b>0 Б) k>0, b<0 В) k<0, b>0 |
1) ![]() |
2) ![]() |
3) ![]() |
Если прямая слева направо возрастает, то k>0 (как на графиках 1) и 3)), и наоборот, если прямая слева направо убывает, то k<0 (как на графике 2).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b.
Посмотрим на график и узнаем b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для графика 1): k>0, b>0 - вариант А)
Для графика 2): k<0, b>0 - вариант В)
Для графика 3): k>0, b<0 - вариант Б)
Ответ: 1) - А), 2) - В), 3) - Б)
Поделитесь решением
Присоединяйтесь к нам...
Андрей и Иван соревновались в 50-метровом бассейне на дистанции 100 м. Графики их заплывов показаны на рисунке. По горизонтальной оси отложено время в секундах, а по вертикальной — расстояние пловца от старта в метрах. На сколько секунд обогнал соперника на первой половине дистанции пловец, проплывший её быстрее?
Установите соответствие между графиками функций и формулами, которые их задают.
ФУНКЦИИ | ГРАФИКИ | ||
1) y=-6/x 2) y=-(1/2)x2 3) y=(1/2)x-2 4) y=-(1/2)x2-2 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции y=x2-6|x|+8. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Постройте график функции y=x2-3|x|-x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Комментарии: