Постройте график функции
y=3|x+7|-x2-13x-42.
Определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
В данной функции присутствует модуль, следовательно функцию надо разложить на две функции, в зависимости от значения модуля:
|x+7|=x+7, при x+7≥0 (т.е. x≥-7)
|x+7|=-(x+7), при х+7<0 (т.е. х<-7)
Тогда вся функция будет выглядеть так:
3(x+7)-x2-13x-42, при x≥-7
-3(x+7)-x2-13x-42, при x<-7
3x+21-x2-13x-42, при x≥-7
-3x-21-x2-13x-42, при x<-7
-x2-10x-21, при x≥-7
-x2-16x-63, при x<-7
График обеих подфункций - парабола, у обеих подфункций коэффициент "а" равен -1, т.е. меньше нуля. Следовательно, ветви обеих парабол направлены вниз.
Построим по точкам графики обеих подфункций, но первый график на диапазоне от -7 до +∞, а второй график на диапазоне от -∞ до -7 (как указано в системе).
Подфункция y1=-x2-10x-21 (Красный график)
X | -7 | -6 | -5 | -4 | -3 |
Y | 0 | 3 | 4 | 3 | 0 |
X | -7 | -8 | -9 | -10 |
Y | 0 | 1 | 0 | -3 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=-2x+4|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Установите соответствие между функциями и их графиками.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | |||
А) y=3x Б) y=-3x В) y=(1/3)x |
1) ![]() |
2) ![]() |
3) ![]() |
4) ![]() |
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
A)
Б)
В)
ФОРМУЛЫ
1)
2) y=2-x2
3) y=√x
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции y=x2-5|x|-x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b>0 2) k<0, b<0 3) k>0, b<0 4) k>0, b>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Комментарии: