Катер прошёл от одной пристани до другой, расстояние между которыми по реке равно 48 км, сделал стоянку на 20 мин и вернулся обратно через 5 целых 1/3 ч после начала поездки. Найдите скорость течения реки, если известно, что скорость катера в стоячей воде равна 20 км/ч.
Первое: 5 целых и 1/3 ч. - это 5 часов 20 минут.
Второе: если катер идет по течению реки, то ее скорость складывается со скоростью реки, а если против течения, то вычитается.
Обозначим:
скорость реки - v
Время катера в пути по течению - t1
Время катера в пути против течения - t2
Движение катера по течению (1):
48=(20+v)t1
Движение катера против течения (2):
48=(20-v)t2
При этом, время в пути составило t1+t2, и равно это 5 часов 20 минут минус 20 мин (на стоянку) и равно это 5 часов (3).
(1) t1=48/(20+v)
(2) t2=48/(20-v)
Подставляем в (3):
48/(20+v)+48/(20-v)=5
Приводим к общему знаменателю:
(48(20-v)+48(20+v))/((20+v)(20-v))=5
(960-48v+960+48v)/((20+v)(20-v))=5
1920/(202-v2)=5
1920=5*(400-v2)
1920=2000-5v2
5v2=2000-1920
5v2=80
v2=16
v=4
Ответ: скорость реки равна 4 км/ч
Поделитесь решением
Присоединяйтесь к нам...
Найдите корни уравнения x2+3x=18.
Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 51 минуту, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 251 км, скорость первого велосипедиста равна 10 км/ч, скорость второго — 20 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
На координатной прямой отмечено число a.
Найдите наибольшее из чисел a, a2, a3.
1) a
2) a2
3) a3
4) не хватает данных для ответа
Решите неравенство x2(-x2-25)≤25(-x2-25).
Три бригады изготовили вместе 246 деталей. Известно, что вторая бригада изготовила деталей в 5 раз больше, чем первая и на 15 деталей меньше, чем третья. На сколько деталей больше изготовила третья бригада, чем первая.
Комментарии: