Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №D39CE0

Задача №233 из 1053
Условие задачи:

Дан правильный шестиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится равносторонний треугольник.

Решение задачи:

Рассмотрим треугольники FAB, BCD и DEF.
Т.к. шестиугольник правильный, то FA=AB=BC=CD=DE=EF и углы /FAB=/BCD=/DEF. Значит рассматриваемые треугольники равны (по первому признаку равенства). Следовательно, FB=BD=DF. Т.е. треугольник BDF - равносторонний.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №0C7DF1

В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.

Задача №AEC23E

В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.

Задача №201054

Найдите тангенс угла AOB, изображённого на рисунке.

Задача №A77323

Найдите угол ABC. Ответ дайте в градусах.

Задача №035C64

Центральный угол AOB опирается на хорду АВ так, что угол ОАВ равен 60°. Найдите длину хорды АВ, если радиус окружности равен 8.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика