На рисунке изображена функция вида y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ
А) Функция возрастает на промежутке
Б) Функция убывает на промежутке
ПРОМЕЖУТКИ
1) [0;3]
2) [-1;1]
3) [2;4]
4) [1;4]
Возрастание или убывание функции определяется поведением функции при "движении" по оси х слева направо. Если каждое последующее значение функции больше предыдущего, то функция возрастает, если меньше - убывает.
А) Функция возрастает на промежутке (-∞;2], следовательно, из предложенных подходит только промежуток [-1;1]
Б) Функция убывает на промежутке (2;+∞), следовательно из предложенных подходит промежуток [2;4]
Ответ: A) - 2); Б) - 3)
Поделитесь решением
Присоединяйтесь к нам...
Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+6,25 ровно одну общую точку. Постройте этот график и все такие прямые.
Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции y=|x|(x+1)-6x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b>0 2) k>0, b>0 3) k<0, b<0 4) k>0, b<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Комментарии: