На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ГРАФИКИ
А)
Б)
В)
КОЭФФИЦИЕНТЫ
1) k<0, b>0
2) k<0, b<0
3) k>0, b>0
В таблице под каждой буквой укажите соответствующий номер.
Если прямая слева направо возрастает, то k>0 (как на графике В)), и наоборот, если прямая слева направо убывает, то k<0 (как на графиках А) и Б)).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b.
Посмотрим на график и узнаем b больше нуля или меньше. Т.е если прямая пересекает ось Y ниже оси X, то b - отрицательная, если выше - положительная. Тогда:
Для графика А): k<0, b<0 - вариант 2)
Для графика Б): k<0, b>0 - вариант 1)
Для графика С): k>0, b>0 - вариант 3)
ГРАФИКИ | А) | Б) | В) |
КОЭФФИЦИЕНТЫ | 2) | 1) | 3) |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=|x|(x+1)-6x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=-x/2-1 2) y=-x/2+1 3) y=x/2+1 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции
y=x|x|-|x|-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции y=|x|(x+1)-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии: