Постройте график функции и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Запишем Область Допустимых Значений (ОДЗ).
Так как на ноль делить нельзя, то 1-x≠0, т.е. x≠1
Упростим функцию:
График представляет из себя параболу. Коэффициент а=-1, т.е. меньше нуля, следовательно ветви параболы направлены вниз. Построим график по точкам:
X | -2 | -1 | 0 | 1 |
Y | -6,25 | -3,25 | -2,25 | -3,25 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=|x|x-|x|-3x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А)
Б)
В)
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции y=|x|(x+1)-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ | ГРАФИКИ | |
А) y=x2+4x+1 Б) y=x2-4x+1 В) y=-x2+4x-1 |
1) | 2) |
3) | 4) |
Постройте график функции y=2x+6|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Комментарии: