Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=2/x 2) y=x2-2 3) y=2x 4) y=2-x2 |
А) ![]() |
Б) ![]() |
В) ![]() |
Рассмотрим формулы.
1) y=2/x - гипербола
2) y=x2-2 - парабола
3) y=2x - прямая
4) y=2-x2 - парабола
Рассмотрим графики.
А) - Прямая
Б) - Гипербола
В) - Парабола
Сопоставить однозначно можно графики прямой и гиперболы:
А) - 3), Б) - 1)
Ветви параболы, на графике В) смотрят вниз, следовательно в формуле коэффициент "а" должен быть отрицательным. Подходит только формула 4).
Ответ: А) - 3), Б) - 1), В) - 4)
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А) y=-x2+2x+5
Б) y=x2+2x-5
В) y=-x2-2x+5
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) f(x)<0 при x<1
2) Наибольшее значение функции равно 4
3) Функция возрастает на промежутке (-∞; 1]
Когда самолёт находится в горизонтальном полёте, подъёмная сила, действующая на крылья, зависит только от скорости. На рисунке изображена эта зависимость для некоторого самолёта. На оси абсцисс откладывается скорость (в километрах в час), на оси ординат — сила (в тоннах силы). Определите по рисунку, на сколько увеличится подъёмная сила (в тоннах силы) при увеличении скорости с 200 км/ч до 400 км/ч.
Постройте график функции y=|x|(x+1)-6x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии: