Постройте график функции y=x+5|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x+5x-x2, при x≥0
x+5(-x)-x2, при x<0
6x-x2, при x≥0
-4x-x2, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=6x-x2, при x≥0 (красный график)
X | 0 | 1 | 2 | 3 |
Y | 0 | 5 | 8 | 9 |
X | 0 | -1 | -2 | -3 | -4 |
Y | 0 | -3 | -4 | -3 | 0 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На графике изображена зависимость атмосферного давления от высоты
над уровнем моря. На горизонтальной оси отмечена высота над уровнем моря в километрах, на вертикальной — давление в миллиметрах ртутного столба. Определите по графику, на какой высоте атмосферное давление равно 280 миллиметрам ртутного столба. Ответ дайте в километрах.
Постройте график функции y=|x|(x+1)-5x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b>0 2) k>0, b>0 3) k<0, b<0 4) k>0, b<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b>0 2) k<0, b<0 3) k>0, b<0 4) k>0, b>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Комментарии: