Постройте график функции y=x+5|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x+5x-x2, при x≥0
x+5(-x)-x2, при x<0
6x-x2, при x≥0
-4x-x2, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=6x-x2, при x≥0 (красный график)
X | 0 | 1 | 2 | 3 |
Y | 0 | 5 | 8 | 9 |
X | 0 | -1 | -2 | -3 | -4 |
Y | 0 | -3 | -4 | -3 | 0 |
Поделитесь решением
Присоединяйтесь к нам...
На графике показано изменение температуры воздуха на протяжении трёх суток. По горизонтали указывается дата и время, по вертикали — значение температуры в градусах Цельсия. Определите по графику наименьшую температуру воздуха 30 мая. Ответ дайте в градусах Цельсия.
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Функция возрастает на промежутке (-∞;-1]
2) Наибольшее значение функции равно 8
3) f(-4)≠f(2)
На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) a>0, c<0 2) a<0, c<0 3) a>0, c>0 4) a<0, c>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции
Определите, при каких значениях k прямая y=kx не имеет с графиком общих точек.
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Комментарии: