Постройте график функции y=-x+5|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
-x+5x-x2, при x≥0
-x+5(-x)-x2, при x<0
4x-x2, при x≥0
-6x-x2, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=4x-x2, при x≥0 (красный график)
X | 0 | 1 | 2 | 3 |
Y | 0 | 3 | 4 | 3 |
X | 0 | -1 | -2 | -3 | -4 |
Y | 0 | -5 | -8 | -9 | -8 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=x2+3x-4|x+2|+2 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке |
1) [-4;-2] 2) [-1;0] 3) [-2;-1] 4) [-2;0] |
Постройте график функции y=x2-8x-4|x-3|+15 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
На графике показано изменение температуры воздуха на протяжении трёх суток. По горизонтали указывается дата и время, по вертикали — значение температуры в градусах Цельсия. Определите по графику наименьшую температуру воздуха 13 июля. Ответ дайте в градусах Цельсия.
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Комментарии: