Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №AC2DC1

Задача №97 из 1053
Условие задачи:

В параллелограмме ABCD точка M — середина стороны CD. Известно, что MA=MB. Докажите, что данный параллелограмм — прямоугольник.

Решение задачи:

Рассмотрим треугольники BCM и MDA. CM=MD, т.к. точка M - середина CD, MA=MB (из условия задачи), CB=AD (по свойству параллелограмма). Соответственно, треугольники BCM и MDA равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /BCM=/MDA.
BC||AD (по определению параллелограмма), рассмотрим сторону CD как секущую к этим параллельным сторонам. Тогда получается, что сумма углов BCM и MDA равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны AB и CD, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону BC как секущую к этим параллельным сторонам.
/CBA и /MCB - внутренние односторонние. Следовательно их сумма равна 180°. А так как /MCB=90°, то /CBA тоже равен 90°.
Аналогично доказывается, что /DAB тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №B8B3E7

В треугольнике ABC угол C прямой, BC=9, sinA=0,3. Найдите AB.

Задача №E41C75

Радиус окружности, вписанной в равносторонний треугольник, равен 5. Найдите высоту этого треугольника.

Задача №0DAB76

Прямые m и n параллельны. Найдите ∠3, если ∠1=6°, ∠2=101°. Ответ дайте в градусах.

Задача №04C840

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 7:6, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 48.

Задача №CE92B7

Основание AC равнобедренного треугольника ABC равно 18. Окружность радиуса 12 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика